Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human and Experiment...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ambient particulate matter induces relaxation of rat aortic rings in vitro

Authors: G.J.M. den Hartog; A.M. Knaapen; Paul Borm; Aalt Bast;

Ambient particulate matter induces relaxation of rat aortic rings in vitro

Abstract

Epidemiological studies have shown an association between ambient levels of particulate matter (PM) and increased mortality from cardiovascular diseases. However, the underlying mechanisms are still not clear. We hypothesised that PM, when translocated after inhalation, could affect vascular smooth muscle function. Therefore, total suspended particulate matter (TSP) was sampled and investigated for its ability to affect aortic muscle contraction. Both TSP and TSP supernatant (TSP-sup) induced a concentration-dependent relaxation of phenylephrine (PE)-precontracted aortic rings. Relaxation induced by 100 jg/ml TSP was 51.5 t 3.1% of total contraction. At 60 and 100 Hg/ ml, relaxation induced by TSP was significantly higher compared to TSP-sup. Ultrafine TiO2, used as a model to investigate the role of ultrafine particles, did not show an effect. Soluble iron, present in TSP suspensions, seems not to be involved, as chelating with deferoxamine did not affect TSP-induced relaxation. However, TSP effects were inhibited by Trolox, suggesting a role of oxidants. Nudation of aortic rings showed that effects of TSP were only partly endothelium-dependent, while preincubation with LNAME increased TSP-induced relaxation. From these data, we conclude that both the particle core and soluble components of TSP can affect the smooth muscle function, leading to changes in the vascular contractile response.

Related Organizations
Keywords

Male, Air Pollutants, Muscle, Smooth, In Vitro Techniques, Oxidants, Antioxidants, Rats, Solubility, Rats, Inbred Lew, Administration, Inhalation, Animals, Chromans, Particle Size, Aorta, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!