Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Romanian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Romanian Journal of Morphology and Embryology
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma

Authors: Bungărdean, Raluca Maria; Şerbănescu, Mircea-Sebastian; Streba, Costin Teodor; Crişan, Maria;

Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma

Abstract

Establishing basal cell carcinoma (BCC) subtype is sometimes challenging for pathologists. Deep-learning (DL) algorithms are an emerging approach in image classification due to their performance, accompanied by a new concept - transfer learning, which implies replacing the final layers of a trained network and retraining it for a new task, while keeping the weights from the imported layers. A DL convolution-based software, capable of classifying 10 subtypes of BCC, was designed. Transfer learning from three general-purpose image classification networks (AlexNet, GoogLeNet, and ResNet-18) was used. Three pathologists independently labeled 2249 patches. Ninety percent of data was used for training and 10% for testing on 100 independent training sequences. Each of the resulted networks independently labeled the whole dataset. Mean and standard deviation (SD) accuracy (ACC) [%]∕sensitivity (SN) [%]∕specificity (SP) [%]∕area under the curve (AUC) for all the networks was 82.53±2.63∕72.52±3.63∕97.94±0.3/0.99. The software was validated on another 50-image dataset, and its results are comparable with the result of three pathologists in terms of agreement. All networks had similar classification accuracies, which demonstrated that they reached a maximum classification rate on the dataset. The software shows promising results, and with further development can be successfully used on histological images, assisting pathologists' diagnosis and teaching.

Keywords

Pathologists, Original Paper, Deep Learning, Skin Neoplasms, Carcinoma, Basal Cell, Humans, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold