Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CUX1 Transcription Factor Is a Downstream Effector of the Proteinase-activated Receptor 2 (PAR2)

Authors: Morley D. Hollenberg; Ryoko Harada; Lam Leduy; Brian J. Wilson; Alain Nepveu;

CUX1 Transcription Factor Is a Downstream Effector of the Proteinase-activated Receptor 2 (PAR2)

Abstract

Proteinase-activated receptors (PARs) are G-protein-coupled receptors that have been linked to an array of cellular processes, including inflammation, migration, and proliferation. Although signal transduction downstream of PARs has been actively investigated, little is known about the mechanisms that lead to changes in transcriptional programs. Here we show that the CUX1 homeodomain protein is a downstream effector of PAR2. Treatment of epithelial and fibroblastic cells with trypsin or the PAR2-activating peptide (PAR2-AP) caused a rapid increase in CUX1 DNA binding activity. The stimulation of CUX1 was specific to PAR2 because no effect was observed with thrombin or the PAR1-AP. Using a panel of recombinant CUX1 proteins, the regulation was found to involve the cut repeat 3 (CR3) and the cut homeodomain, two DNA binding domains that are present in all CUX1 isoforms. Expression analysis in cux1(-/-) mouse embryo fibroblasts led to the identification of three genes that are regulated downstream of both PAR2 and CUX1 as follows: interleukin-1alpha, matrix metalloproteinase-10, and cyclo-oxygenase-2. p110 CUX1 was able to activate each of these genes, both in reporter assays and following the infection of cells. Moreover, the treatment of Hs578T breast tumor cells with trypsin led to a rapid recruitment of p110 CUX1 to the promoter of these genes and to a concomitant increase in their mRNA steady-state levels. Altogether, these results suggest a model whereby activation of PAR2 triggers a signaling cascade that culminates with the stimulation of p110 CUX1 DNA binding and the transcriptional activation of target genes.

Related Organizations
Keywords

Homeodomain Proteins, Inflammation, Mice, Knockout, Nuclear Proteins, Fibroblasts, Embryo, Mammalian, Models, Biological, Mice, Gene Expression Regulation, Matrix Metalloproteinase 10, Cell Movement, Cyclooxygenase 2, Cell Line, Tumor, Interleukin-1alpha, Mutation, NIH 3T3 Cells, Animals, Protein Isoforms, Peptides, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
gold