
The hereditary ataxias are a complex group of neurological disorders characterized by the degeneration of the cerebellum and its associated connections. The molecular mechanisms that trigger the loss of Purkinje cells in this group of diseases remain incompletely understood. Here, we report a previously undescribed dominant mouse model of cerebellar ataxia, moonwalker ( Mwk ), that displays motor and coordination defects and loss of cerebellar Purkinje cells. Mwk mice harbor a gain-of-function mutation (T635A) in the Trpc3 gene encoding the nonselective transient receptor potential cation channel, type C3 (TRPC3), resulting in altered TRPC3 channel gating. TRPC3 is highly expressed in Purkinje cells during the phase of dendritogenesis. Interestingly, growth and differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Our findings define a previously unknown role for TRPC3 in both dendritic development and survival of Purkinje cells, and provide a unique mechanism underlying cerebellar ataxia.
Male, Mice, Inbred BALB C, Cerebellar Ataxia, Molecular Sequence Data, Cell Differentiation, Dendrites, Motor Activity, Mice, Mice, Neurologic Mutants, Purkinje Cells, Animals, Point Mutation, Amino Acid Sequence, Phosphorylation, Ion Channel Gating, TRPC Cation Channels
Male, Mice, Inbred BALB C, Cerebellar Ataxia, Molecular Sequence Data, Cell Differentiation, Dendrites, Motor Activity, Mice, Mice, Neurologic Mutants, Purkinje Cells, Animals, Point Mutation, Amino Acid Sequence, Phosphorylation, Ion Channel Gating, TRPC Cation Channels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 198 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
