Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Yeast
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes

Authors: Christopher H. Wade; Mark A. Umbarger; Michael A. McAlear;

The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes

Abstract

AbstractThe ribosome biogenesis pathway constitutes one of the major metabolic obligations for a dividing yeast cell and it depends upon the activity of hundreds of gene products to produce the necessary rRNA and ribosomal protein components. Previously, we reported that a set of 65 S. cerevisiae genes that function in the rRNA biosynthesis pathway are transcriptionally co‐regulated as cells pass through a variety of physiological transitions. By analysing multiple microarray‐based transcriptional datasets, we have extended that study and now suggest that the ribosomal and rRNA biosynthesis regulon contains over 200 genes. This regulon is distinct from the set of ribosomal protein genes, and the promoters of the expanded RRB gene set are highly enriched for the PAC and RRPE motifs. Since a similar pattern of organization and gene regulation can be recognized in C. albicans, the RRB regulon appears to be a conserved, extensive, and metabolically important group of genes. Copyright © 2006 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Gene Expression Regulation, Fungal, Candida albicans, Genes, Fungal, Genes, rRNA, Saccharomyces cerevisiae, Promoter Regions, Genetic, Regulon, Ribosomes, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!