Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers

Authors: Krizek, Beth A.; Eaddy, Marcie;

AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers

Abstract

During flower development, pluripotent stem cells within the floral meristem give rise to proliferative precursor cells whose progeny eventually acquire specialized functions within each floral organ. The regulatory mechanisms by which plant cells transition from a proliferating state to a differentiated state are not well characterized. Several members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family, including AINTEGUMENTA (ANT) and AIL6/PLT3, are important regulators of cell proliferation in flowers. To further investigate the role of AIL6 during flower development, we have characterized transgenic plants in which the coding region of AIL6 was expressed under the control of the constitutive 35S promoter (35S:cAIL6). These plants display changes in floral organ size and morphology that are associated with alterations in the pattern and duration of cell divisions within developing organs. In addition, we find that very high levels of AIL6 expression inhibit cellular differentiation. In contrast, ant ail6 double mutants display premature differentiation of floral meristem cells. These results indicate that these two transcription factors regulate both proliferation and differentiation in flowers.

Keywords

Arabidopsis Proteins, organogenesis, Arabidopsis, Plant Biology, Gene Expression Regulation, Developmental, Cell Differentiation, differentiation, Flowers, Genes, Plant, Plants, Genetically Modified, AP2/ERF AIL/PLT, Gene Expression Regulation, Plant, RNA, Plant, flower development, Mutation, Microscopy, Electron, Scanning, RNA, Messenger, Promoter Regions, Genetic, Molecular Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!