Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning the Indus Script

Authors: Palaniappan, Satish; Adhikari, Ronojoy;

Deep Learning the Indus Script

Abstract

Standardized corpora of undeciphered scripts, a necessary starting point for computational epigraphy, requires laborious human effort for their preparation from raw archaeological records. Automating this process through machine learning algorithms can be of significant aid to epigraphical research. Here, we take the first steps in this direction and present a deep learning pipeline that takes as input images of the undeciphered Indus script, as found in archaeological artifacts, and returns as output a string of graphemes, suitable for inclusion in a standard corpus. The image is first decomposed into regions using Selective Search and these regions are classified as containing textual and/or graphical information using a convolutional neural network. Regions classified as potentially containing text are hierarchically merged and trimmed to remove non-textual information. The remaining textual part of the image is segmented using standard image processing techniques to isolate individual graphemes. This set is finally passed to a second convolutional neural network to classify the graphemes, based on a standard corpus. The classifier can identify the presence or absence of the most frequent Indus grapheme, the "jar" sign, with an accuracy of 92%. Our results demonstrate the great potential of deep learning approaches in computational epigraphy and, more generally, in the digital humanities.

17 pages, 10 figures, 7 supporting figures (2 pages)

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, I.2.10, Computer Science - Computation and Language, I.2.6, I.5.4, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computation and Language (cs.CL), Machine Learning (cs.LG), I.5.4; I.2.10; I.2.6

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green