Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chromosomaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chromosoma
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Chromosoma
Article . 1999
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The association of ATR protein with mouse meiotic chromosome cores

Authors: Carrolee Barlow; Peter B. Moens; Stephen P. Jackson; Anthony Wynshaw-Boris; Magdalena Tarsounas; Takashi Morita; Toshiyuki Habu; +2 Authors

The association of ATR protein with mouse meiotic chromosome cores

Abstract

The ATR (ataxia telangiectasia- and RAD3-related) protein is present on meiotic prophase chromosome cores and paired cores (synaptonemal complexes, SCs). Its striking characteristic is that the protein forms dense aggregates on the cores and SCs of the last chromosomes to pair at the zygotene-pachytene transition. It would appear that the ATR protein either signals delays in pairing or it is directly involved in the completion of the pairing phase. Atm-deficient spermatocytes, which are defective in the chromosome pairing phase, accumulate large amounts of ATR. The behaviour of ATR at meiotic prophase sets it apart from the distribution of the RAD51/DMC1 recombinase complex and our electron microscope observations confirm that they do not co-localize. We failed to detect ATM in association with cores/SCs and we have reported elsewhere that RAD1 protein does not co-localize with DMC1 foci. The expectation that putative DNA-damage checkpoint proteins. ATR, ATM and RAD1, are associated with RAD51/DMC1 recombination sites where DNA breaks are expected to be present, is therefore not supported by our observations.

Related Organizations
Keywords

Adenosine Triphosphatases, Tumor Suppressor Proteins, Nuclear Proteins, Proteins, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Phosphate-Binding Proteins, Protein Serine-Threonine Kinases, Immunohistochemistry, Chromosomes, DNA-Binding Proteins, Meiosis, Mice, Microscopy, Electron, Animals, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!