Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

Authors: Jade M.-Y. Lu; Daniel R. Bush;

His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

Abstract

The proton–sucrose symporter that mediates phloem loading is a key component of assimilate partitioning in many higher plants. Previous biochemical investigations showed that a diethyl pyrocarbonate-sensitive histidine residue is at or near the substrate-binding site of the symporter. Among the proton–sucrose symporters cloned to date, only the histidine residue at position 65 of AtSUC1 from Arabidopsis thaliana is conserved across species. To test whether His-65 is involved in the transport reaction, we have used site-directed mutagenesis and functional expression in yeast to determine the significance of this residue in the reaction mechanism. Symporters with mutations at His-65 exhibited a range of activities; for example, the H65C mutant resulted in the complete loss of transport capacity, whereas H65Q was almost as active as wild type. Surprisingly, the H65K and H65R symporters transport sucrose at significantly higher rates (increased V max ) than the wild-type symporter, suggesting His-65 may be associated with a rate-limiting step in the transport reaction. RNA gel blot and protein blot analyses showed that, with the exception of H65C, the variation in transport activity was not because of alterations in steady-state levels of mRNA or symporter protein. Significantly, those symporters with substitutions of His-65 that remained transport competent were no longer sensitive to inactivation by diethyl pyrocarbonate, demonstrating that this is the inhibitor-sensitive histidine residue. Taken together with our previous results, these data show that His-65 is involved in sucrose binding, and increased rates of transport implicate this region of the protein in the transport reaction.

Keywords

Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Membrane Transport Proteins, Biological Transport, Amino Acid Substitution, Histidine, Amino Acid Sequence, Carrier Proteins, DNA Primers, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze