
doi: 10.1093/pcp/pch083
pmid: 15215506
Polyamines play pivotal roles in plant defense to environmental stresses. However, stress tolerance of genetically engineered plants for polyamine biosynthesis has been little examined so far. We cloned spermidine synthase cDNA from Cucurbita ficifolia and the gene was introduced to Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in the transgenic plants. As compared with the wild-type plants, the T2 and T3 transgenic plants exhibited a significant increase in spermidine synthase activity and spermidine content in leaves together with enhanced tolerance to various stresses including chilling, freezing, salinity, hyperosmosis, drought, and paraquat toxicity. During exposure to chilling stress (5 degrees C), the transgenics displayed a remarkable increase in arginine decarboxylase activity and conjugated spermidine contents in leaves compared to the wild type. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenics than in the wild type under chilling stress. These genes included those for stress-responsive transcription factors such as DREB and stress-protective proteins like rd29A. These results strongly suggest an important role for spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms in plants under stress conditions.
DNA, Complementary, Arabidopsis Proteins, Carboxy-Lyases, Spermidine, Arabidopsis, Environmental Exposure, Plants, Genetically Modified, Transfection, Spermidine Synthase, Up-Regulation, Cold Temperature, Gene Expression Regulation, Plant, Transgenes, Signal Transduction, Transcription Factors
DNA, Complementary, Arabidopsis Proteins, Carboxy-Lyases, Spermidine, Arabidopsis, Environmental Exposure, Plants, Genetically Modified, Transfection, Spermidine Synthase, Up-Regulation, Cold Temperature, Gene Expression Regulation, Plant, Transgenes, Signal Transduction, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 531 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
