
A limited collection of signaling networks and transcriptional effectors directs the full spectrum of cellular behaviors that comprise development. One mechanism to diversify regulatory potential is to combine multiple biochemical activities into the same protein. Exemplifying this principle of modularity, Eyes absent (Eya), originally identified as a transcriptional co-activator within the retinal determination gene network (RDGN), also harbors tyrosine and threonine phosphatase activities. Although mounting evidence argues for the importance of Eya's phosphatase activities to mammalian biology, genetic rescue experiments in Drosophila have shown that the tyrosine phosphatase function is dispensable for normal development. In this study, we repeated these rescue experiments in genetically sensitized backgrounds in which the dose of one or more RDGN factor was reduced. Heterozygosity for sine oculis or dachshund, both core RDGN members, compromised the ability of phosphatase-dead eya, but not of the control wild type eya transgene, to rescue the retinal defects and reduced viability associated with eya loss. We speculate that Eya's tyrosine phosphatase activity, although non-essential, confers robustness to RDGN output.
Heterozygote, Science, Q, R, Retina, Fertility, Mutation, Medicine, Animals, Drosophila Proteins, Drosophila, Gene Regulatory Networks, Transgenes, Protein Tyrosine Phosphatases, Eye Proteins, Research Article
Heterozygote, Science, Q, R, Retina, Fertility, Mutation, Medicine, Animals, Drosophila Proteins, Drosophila, Gene Regulatory Networks, Transgenes, Protein Tyrosine Phosphatases, Eye Proteins, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
