Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Letters
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring the impact of EGFR T790M neighboring SNPs on ARMS-based T790M mutation assay

Authors: Yaqi Duan; Sanpeng Xu; Guoping Wang; Liping Lou; Fengjuan Tang; Juan Shou;

Exploring the impact of EGFR T790M neighboring SNPs on ARMS-based T790M mutation assay

Abstract

The present study aimed to explore the influence of T790M neighboring single nucleotide polymorphism (SNP) on the sensitivity of amplification refractory mutation system (ARMS)-based T790M mutation assay. Three ARMS-quantitative polymerase chain reaction (qPCR) systems (system 1 had a forward ARMS primer without rs1050171, system 2 included a forward ARMS primer with rs1050171 and system 3 contained the above two forward ARMS primers) were used to detect the T790M mutation in two series plasmid samples and genomic DNA (gDNA) of the cell line H1975. A total of 670 formalin-fixed paraffin-embedded (FFPE) tumor samples from non-small cell lung cancer patients were used to detect the epidermal growth factor receptor (EGFR) gene T790M mutation by direct sequencing and ARMS-qPCR. The ARMS-qPCR system 1 effectively detected samples with as low as 1% T790M mutant plasmid 1 (without rs1050171) and with 50% T790M mutant plasmid 2 (with rs1050171), while the ARMS-qPCR system 2 detected samples with 20 and 50% T790M mutant plasmid 1, in addition to samples with 1% T790M mutant plasmid 2. For the ARMS-qPCR system 3, samples with as low as 1% T790M mutant plasmids 1 or 2 were effectively detected. For gDNA analysis of the cell line H1975, the T790M mutation was effectively detected by the ARMS-qPCR systems 2 and 3 (~50% mutation rate), but was detected with a low mutation abundance by the ARMS-qPCR system 1 (~1% mutation rate). Of the 670 FFPE samples, 5 cases were identified to have the T790M mutation by sequencing and by the ARMS-qPCR system 1. One sample (named N067), which was considered as T790M-negative by sequencing, was demonstrated to have the T790M mutation using the ARMS-qPCR system 1. Sample N094, which was variant homozygous for rs1050171 and was indicated to be T790M-negative by sequencing and by the ARMS-qPCR system 1, was identified to have the T790M mutation with the ARMS-qPCR system 3. The A-variant allele frequency of rs1050171 was observed to be 28.2% in the 670 FFPE tumor samples, while the presence of rs148188503 (c. C2355T, p. T785T) was observed in sample N558, and a novel SNP with a base substitution (c. T2375C) at position 792 (p. L792P) in exon 20 of the EGFR gene was observed in sample N310. rs1050171 is a high-frequency SNP located near T790M, and the mutation statuses of rs1050171 appear to influence the sensitivity of the ARMS-based T790M detection system, thus generating a 14.3% false-negative rate (1/7). The present study proposes the risk that target neighboring SNPs (as far as 8 bp away in the present study) may exert on the sensitivity of ARMS-based detection methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
gold
Related to Research communities
Cancer Research