
In this chpater we investigate the combined effects of quantization and clipping on Higher Order function neural networks (HOFNN) and multilayer feedforward neural networks (MLFNN). Statistical models are used to analyze the effects of quantization in a digital implementation. We analyze the performance degradation caused as a function of the number of fixed-point and floating-point quantization bits under the assumption of different probability distributions for the quantized variables, and then compare the training performance between situations with and without weight clipping, and derive in detail the effect of the quantization error on forward and backward propagation. No matter what distribution the initial weights comply with, the weights distribution will approximate a normal distribution for the training of floating-point or high-precision fixed-point quantization. Only when the number of quantization bits is very low, the weights distribution may cluster to ±1 for the training with fixed-point quantization. We establish and analyze the relationships for a true nonlinear neuron between inputs and outputs bit resolution, training and quantization methods, the number of network layers, network order and performance degradation, all based on statistical models, and for on-chip and off-chip training. Our experimental simulation results verify the presented theoretical analysis.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
