
An orbit-flip homoclinic orbit Gamma of a vector field defined on R-3 is a homoclinic orbit to an equilibrium point for which the one-dimensional unstable manifold of the equilibrium point is connected to the one-dimensional strong stable manifold. In this paper, we show that in a generic unfolding of such a homoclinic orbit, there exists a positive Lebesgue measure set in the parameter space for which the corresponding vector field possesses a suspended strange attractor. To prove the result, we propose a rescaling in the phase space and a blowing up in the parameter space, and in the new system, we show that the Poincare return map is close to the map (x, y) bar right arrow (1 - (a) over barx(2), bx) when b is close to 0. With a similar rescaling/blowing up, we also obtain a similar result in the case where Gamma is an inclination-flip homoclinic orbit.
BIFURCATIONS
BIFURCATIONS
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
