Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
UNC Dataverse
Article . 2008
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion

Authors: Bruce D. Cuevas; Gary L. Johnson; JoAnn Trejo; Puneeta Arora; Angelina Russo;

Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion

Abstract

Hyperactivation of ErbB signaling is implicated in metastatic breast cancer. However, the mechanisms that cause dysregulated ErbB signaling and promote breast carcinoma cell invasion remain poorly understood. One pathway leading to ErbB activation that remains unexplored in breast carcinoma cell invasion involves transactivation by G-protein-coupled receptors (GPCRs). Protease-activated receptor-1 (PAR1), a GPCR activated by extracellular proteases, is overexpressed in invasive breast cancer. PAR1 is also proposed to function in breast cancer invasion and metastasis, but how PAR1 contributes to these processes is not known. In this study, we report that proteolytic activation of PAR1 by thrombin induces persistent transactivation of EGFR and ErbB2/HER2 in invasive breast carcinoma, but not in normal mammary epithelial cells. PAR1-stimulated EGFR and ErbB2 transactivation leads to prolonged extracellular signal-regulated kinase-1 and −2 signaling and promotes breast carcinoma cell invasion. We also show that PAR1 signaling through Gαi/o and metalloprotease activity is critical for ErbB transactivation and cellular invasion. Finally, we demonstrate that PAR1 expression in invasive breast carcinoma is essential for tumor growth in vivo assessed by mammary fat pad xenografts. These studies reveal a critical role for PAR1, a receptor activated by tumor-generated proteases, in hyperactivation of ErbB signaling that promotes breast carcinoma cell invasion.

Keywords

Transcriptional Activation, Receptor, ErbB-2, Thrombin, Breast Neoplasms, ADAM17 Protein, Fibroblasts, GTP-Binding Protein alpha Subunits, ErbB Receptors, ADAM Proteins, Mice, Cell Line, Tumor, NIH 3T3 Cells, Animals, Humans, Female, Neoplasm Invasiveness, Receptor, PAR-1, Extracellular Signal-Regulated MAP Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 10%
Top 10%
Top 1%
bronze