Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pedobiologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pedobiologia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pedobiologia
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consequences of anecic earthworm removal over 18 months for earthworm assemblages and nutrient cycling in a grassland

Authors: Keith, Aidan M.; Boots, Bas; Stromberger, Mary E.; Schmidt, Olaf;

Consequences of anecic earthworm removal over 18 months for earthworm assemblages and nutrient cycling in a grassland

Abstract

Earthworms are recognised widely for playing important roles in soil functioning, but few studies have attempted to assess the effects of separate functional groups under natural field conditions. We investigated the effects of selective removal of large anecic earthworms (primarily Lumbricus terrestris) over 18 months on earthworm assemblages, earthworm trophic ecology, and plant nutrient uptake in a temperate grassland. We used unenclosed field plots to simulate selective predation of large anecic individuals by alien flatworms and isotopically enriched plant material (13C and 15N) to trace nutrients. Though surface addition of plant material to plots increased the abundance and biomass of total and anecic earthworms, compared to control plots, earthworm composition was different and more variable where anecics had been removed. Most notably, in treatments receiving litter, abundance and biomass of the litter-feeding epi-anecic Lumbricus festivus and epigeic Satchellius mammalis were significantly greater where anecics had been removed. Addition of labelled plant material enriched individuals from all species in 13C and 15N, especially in litter-feeding epigeics. Similar abundances but altered isotopic compositions suggest that the removal of anecics influenced the feeding activities of other earthworm species. In particular, the soil-feeding endogeic Aporrectodea caliginosa was less enriched where anecics had been removed, suggesting that this species benefits from anecic surface foraging activity. Individual L. terrestris tended to be less enriched isotopically in the removal treatment, probably reflecting re-colonisation from outside litter addition plots. There was no effect of anecic removal on 15N uptake into above-ground biomass of each of three plant functional groups, though there was a trend of greater enrichment in removal plots. Taken together, these findings provide novel evidence, from a real field setting, that low-level reduction of anecic earthworm populations (experimental removal of 4 large individuals per 1 m2 plot over 18 months) can affect other earthworm species in terms of their abundance and trophic relations.

Keywords

exclusion experiment, stable isotopes, earthworms, litter decomposition, grassland, soil functions, Lumbricidae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid