
Edge detection plays an important role in many computer vision systems. In this paper, we propose a novel application agnostic algorithm for prediction of probabilities based on the contextual information available and then apply the algorithm for estimating the probability of pixels belonging to an edge using surrounding pixel values as local contexts. We then proceed to test different image transformations as input layers, such as the Canny edge detector. We propose two different architectures, one single layered and one multilayered, which approach the scaling problem by creating scaled side outputs and combining them via a logistic regression layer. We tested our approach on the BSDS500 edge detection dataset with optimistic results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
