Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Learning & Memoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Learning & Memory
Article
Data sources: UnpayWall
Learning & Memory
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Genes Expressed in the Amygdala During the Formation of Fear Memory

Authors: Oliver Stork; Kunihiko Obata; Simone Stork; Hans-Christian Pape;

Identification of Genes Expressed in the Amygdala During the Formation of Fear Memory

Abstract

In this study we describe changes of gene expression that occur in the basolateral complex of the mouse amygdala (BLA) during the formation of fear memory. Through the combination of a behavioral training scheme with polymerase chain reaction-based expression analysis (subtractive hybridization and virtual Northern analysis) we were able to identify various gene products that are increased in expression after Pavlovian fear conditioning and are of potential significance for neural plasticity and information storage in the amygdala. In particular, a key enzyme of monoamine metabolism, aldehyde reductase, and the protein sorting and ubiquitination factor Praja1, showed pronounced and learning-specific induction six hours after fear conditioning training. Aldehyde reductase and Praja1, including a novel alternatively spliced isoform termed Praja1a, were induced in the BLA depending on the emotional stimulus presented and showed different expression levels in response to associative conditioning, training stress, and experience of conditioned fear. Stress and fear were further found to induce various signal transduction factors (transthyretin, phosphodiesterase1, protein kinase inhibitor-α) and structural reorganization factors (e.g., E2-ubiquitin conjugating enzyme, neuroligin1, actin, UDP-galactose transporter) during training. Our results show that the formation of Pavlovian fear memory is associated with changes of gene expression in the BLA, which may contribute to neural plasticity and the processing of information about both conditioned and unconditioned fear stimuli. [The Praja1a sequence has been deposited in GenBank data base under accession no. AF335250.]

Keywords

Brain Chemistry, Neuronal Plasticity, Base Sequence, Ubiquitin-Protein Ligases, Molecular Sequence Data, Gene Expression, Proteins, Fear, Amygdala, Alternative Splicing, Mice, Aldehyde Reductase, Memory, Animals, Protein Isoforms, Amino Acid Sequence, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal