Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lineage tracing and resulting phenotype of haemopoietic-derived cells in the pancreas during beta cell regeneration

Authors: D. J. Hill; D. J. Hill; Edith Arany; Edith Arany; Astrid Chamson-Reig;

Lineage tracing and resulting phenotype of haemopoietic-derived cells in the pancreas during beta cell regeneration

Abstract

Transplantation of bone marrow-derived haemopoietic stem cells following streptozotocin (STZ) treatment to induce pancreatic beta cell loss in mice causes the partial regeneration of beta cell mass, with many haemopoietic cells demonstrating endothelial cell markers. This study used genetically tagged haemopoietic lineage-derived cells to determine how endogenous cells are mobilised following beta cell loss and subsequent replacement.A double transgenic mouse model, Vav-iCre; R26R-enhanced yellow fluorescent protein (YFP), was used where only haemopoietic lineage cells expressed the Vav1 gene promoter allowing expression of the YFP reporter gene. Between postnatal days 2 and 4 mice were injected with STZ or vehicle (control) and body weight and glycaemia were monitored. Mice were killed between days 10 and 130, and the pancreases were examined by immunofluorescence microscopy.YFP-expressing cells infiltrated the pancreas at all ages, being present around newly forming islets at the pancreatic ducts, and within larger islets. Small numbers of YFP-positive cells (<5%) co-stained for the macrophage markers F4/80 or Mac1, for cytokeratin 19, or for the transcription factor pancreatic and duodenal homeobox 1 (PDX-1), but no co-localisation was seen with insulin or other endocrine hormones. Within islets approximately 30% of YFP-positive cells co-stained for the endothelial cell marker CD31, and following STZ the number of haemopoietic-derived cells, and the proportion that were CD31-positive, both significantly increased after 21 and 40 days, coincident with a partial replacement of beta cells.Our results suggest that following beta cell loss endogenous haemopoietic-lineage cells contribute to intra-islet angiogenesis, which supports a partial recovery of beta cell mass.

Keywords

Analysis of Variance, Haemopoietic, Vav, Hematopoietic Stem Cell Transplantation, 610, Fluorescent Antibody Technique, Mice, Transgenic, Diabetes Mellitus, Experimental, Mice, Endothelial cell, Insulin-Secreting Cells, Animals, Regeneration, Cell Lineage, Pancreas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Green
bronze