
In austere environments, teleoperated surgical robots could save the lives of critically injured patients if they can perform complex surgical maneuvers under limited communication bandwidth. The bandwidth requirement is reduced by transferring atomic surgical actions (referred to as “surgemes”) instead of the low-level kinematic information. While such a policy reduces the bandwidth requirement, it requires accurate recognition of the surgemes. In this paper, we demonstrate that transfer learning across surgical tasks can boost the performance of surgeme recognition. This is demonstrated by using a network pre-trained with peg-transfer data from Yumi robot to learn classification on debridement on data from Taurus robot. Using a pre-trained network improves the classification accuracy achieves a classification accuracy of 76% with only 8 sequences in target domain, which is 22.5% better than no-transfer scenario. Additionally, ablations on transfer learning indicate that transfer learning requires 40% less data compared to no-transfer to achieve same classification accuracy. Further, the convergence rate of the transfer learning setup is significantly higher than the no-transfer setup trained only on the target domain.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
