Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gastroenterologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gastroenterology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gastroenterology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enteropathogenic Escherichia coli Infection Inhibits Intestinal Serotonin Transporter Function and Expression

Authors: Gail Hecht; Jerrold R. Turner; Seema Saksena; Amika Singla; Ali Esmaili; Saad Nazir; Alip Borthakur; +3 Authors

Enteropathogenic Escherichia coli Infection Inhibits Intestinal Serotonin Transporter Function and Expression

Abstract

Serotonin transporter (SERT) plays a critical role in regulating serotonin (5-hydroxytryptamine [5-HT]) availability in the gut. Elevated 5-HT levels are associated with diarrheal conditions such as irritable bowel syndrome and enteric infections. Whether alteration in SERT activity contributes to the pathophysiology of diarrhea induced by the food-borne pathogen enteropathogenic Escherichia coli (EPEC) is not known. The present studies examined the effects of EPEC infection on SERT activity and expression in intestinal epithelial cells and elucidated the underlying mechanisms.Caco-2 cells as a model of human intestinal epithelia and EPEC-infected C57BL/6J mouse model of infection were utilized. SERT activity was measured as Na(+) and Cl(-) dependent (3)[H] 5-HT uptake. SERT expression was measured by real-time quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence studies.Infection of Caco-2 cells with EPEC for 30-120 minutes decreased apical SERT activity (P < .001) in a type 3 secretion system dependent manner and via involvement of protein tyrosine phosphatases. EPEC infection decreased V(max) of the transporter; whereas cell surface biotinylation studies revealed no alteration in the cellular or plasma membrane content of SERT in Caco-2 cells. EPEC infection of mice (24 hours) reduced SERT immunostaining with a corresponding decrease in SERT messenger RNA levels, 5-HT uptake, and mucosal 5-HT content in the small intestine.Our results demonstrate inhibition of SERT by EPEC and define the mechanisms underlying these effects. These data may aid in the development of a novel pharmacotherapy to modulate the serotonergic system in treatment of infectious diarrheal diseases.

Keywords

Serotonin Plasma Membrane Transport Proteins, Serotonin, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Down-Regulation, Fluorescent Antibody Technique, Biological Transport, Mice, Inbred C57BL, Disease Models, Animal, Enteropathogenic Escherichia coli, Kinetics, Mice, Intestine, Small, Animals, Humans, RNA, Messenger, Caco-2 Cells, Intestinal Mucosa, Protein Tyrosine Phosphatases, Escherichia coli Infections

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
bronze