Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Metabolismarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Metabolism
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Metabolism
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Metabolism
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell Metabolism
Article . 2006
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Critical role for peptide YY in protein-mediated satiation and body-weight regulation

Authors: Saloni Kapoor; Helen Heffron; Rachel L. Batterham; Joanna E. Chivers; Keval Chandarana; E. Louise Thomas; Jimmy D. Bell; +3 Authors

Critical role for peptide YY in protein-mediated satiation and body-weight regulation

Abstract

Dietary protein enhances satiety and promotes weight loss, but the mechanisms by which appetite is affected remain unclear. We investigated the role of gut hormones, key regulators of ingestive behavior, in mediating the satiating effects of different macronutrients. In normal-weight and obese human subjects, high-protein intake induced the greatest release of the anorectic hormone peptide YY (PYY) and the most pronounced satiety. Long-term augmentation of dietary protein in mice increased plasma PYY levels, decreased food intake, and reduced adiposity. To directly determine the role of PYY in mediating the satiating effects of protein, we generated Pyy null mice, which were selectively resistant to the satiating and weight-reducing effects of protein and developed marked obesity that was reversed by exogenous PYY treatment. Our findings suggest that modulating the release of endogenous satiety factors, such as PYY, through alteration of specific diet constituents could provide a rational therapy for obesity.

Keywords

Male, Physiology, Enteroendocrine Cells, HUMDISEASE, Mice, Transgenic, Satiety Response, MOLNEURO, Mice, Animals, Humans, Peptide YY, Obesity, Molecular Biology, Food, Formulated, Mice, Knockout, Appetite Regulation, Body Weight, Cell Biology, Feeding Behavior, Hormones, Up-Regulation, Gastrointestinal Tract, Mice, Inbred C57BL, Disease Models, Animal, Dietary Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    529
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
529
Top 1%
Top 1%
Top 1%
hybrid