Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1997 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature
Article . 1997
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic

Authors: Allen Laughon; Kirby D. Johnson; Sean B. Carroll; Hui Ju Chen; Jaeseob Kim;

Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic

Abstract

The TGF-beta (transforming growth factor-beta)-related signalling proteins, including Decapentaplegic (Dpp) in Drosophila-and bone morphogenic proteins and activin in vertebrates, affect the growth and patterning of a great variety of structures. However, the mechanisms by which these ligands regulate gene expression are not understood. Activation of complexes of type I with type II receptors results in the phosphorylation and nuclear localization of members of the SMAD protein family, which are thought to act as co-activators of transcription, perhaps in conjunction with sequence-specific cofactors. Here we show that the amino-terminal domain of the Drosophila Mothers against dpp protein (Mad), a mediator of Dpp signalling, possesses a sequence-specific DNA-binding activity that becomes apparent when carboxy-terminal residues are removed. Mad binds to and is required for the activation of an enhancer within the vestigial wing-patterning gene in cells across the entire developing wing blade. Mad also binds to Dpp-response elements in other genes. These results suggest that Dpp signalling regulates gene expression by activating Mad binding to target gene enhancers.

Keywords

Embryonic Induction, Homeodomain Proteins, Male, Binding Sites, Base Sequence, Recombinant Fusion Proteins, Gene Expression Regulation, Developmental, Nuclear Proteins, DNA, DNA-Binding Proteins, Repressor Proteins, Enhancer Elements, Genetic, Consensus Sequence, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Female, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    510
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
510
Top 1%
Top 0.1%
Top 0.1%
bronze