Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction between Ran and Mog1 Is Required for Efficient Nuclear Protein Import

Authors: Michelle T. Harreman; Anita H. Corbett; Rosanna P. Baker; John F. Eccleston; Murray Stewart;

Interaction between Ran and Mog1 Is Required for Efficient Nuclear Protein Import

Abstract

Mog1 is a nuclear protein that interacts with Ran, the Ras family GTPase that confers directionality to nuclear import and export pathways. Deletion of MOG1 in Saccharomyces cerevisiae (Deltamog1) causes temperature-sensitive growth and defects in nuclear protein import. Mog1 has previously been shown to stimulate GTP release from Ran and we demonstrate here that addition of Mog1 to either Ran-GTP or Ran-GDP results in nucleotide release and formation of a stable complex between Mog1 and nucleotide-free Ran. Moreover, MOG1 shows synthetic lethality with PRP20, the Ran guanine nucleotide exchange factor (RanGEF) that also binds nucleotide-free Ran. To probe the functional role of the Mog1-Ran interaction, we engineered mutants of yeast Mog1 and Ran that specifically disrupt their interaction both in vitro and in vivo. These mutants indicate that the interaction interface involves conserved Mog1p residues Asp(62) and Glu(65), and residue Lys(136) in yeast Ran. Mutations at these residues decrease the ability of Mog1 to bind and release nucleotide from Ran. Furthermore, the E65K-Mog1 and K136E-Ran mutations in yeast cause temperature sensitivity and mislocalization of a nuclear import reporter protein, similar to the phenotype observed for the Deltamog1 strain. Our results indicate that a primary function of Mog1 requires binding to Ran and that the Mog1-Ran interaction is necessary for efficient nuclear protein import in vivo.

Keywords

Models, Molecular, Saccharomyces cerevisiae Proteins, Nuclear Proteins, Crystallography, X-Ray, Guanosine Diphosphate, Recombinant Proteins, DNA-Binding Proteins, Fungal Proteins, Protein Transport, ran GTP-Binding Protein, Mutagenesis, Site-Directed, Guanine Nucleotide Exchange Factors, Guanosine Triphosphate

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
gold