Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19

Authors: Wanhui Kim; Dao-Xiu Zhou; David Latrasse; Caroline Servet;

Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19

Abstract

Flowering time is tightly controlled by several regulatory pathways including photoperiod, vernalization in which epigenetic processes are involved. In this work, we have found that the Arabidopsis histone deacetylase gene HDA9 is involved in flowering time control. Mutation of the gene led to an early flowering phenotype in short day grown plants while without effect in long days. Analysis of flowering time regulatory gene expression revealed that hda9 mutations highly induced the expression of AGL19, but had no effect on CO, SOC1 or FLC. Chromatin immunoprecipitation assays indicated that the mutations led to a clear increase of histone H3K9 and H3K27 acetylation on the AGL19 gene in short days. AGL19 promotes flowering in a way independent of the CO and FLC pathways and has been shown to be repressed by polycomb group repressive complex2 (PRC2) EMF2 but activated by vernalization. The induced levels of AGL19 expression and histone acetylation by the hda9 mutations were comparable to that of the gene under long day conditions, indicating that AGL19 is regulated also by day length and that HDA9 is involved in short day repression of AGL19 by promoting histone H3 deacetylation, which may be related to the PRC2 EMF2 complex.

Keywords

Time Factors, Arabidopsis Proteins, Gene Expression Regulation, Plant, Mutation, Arabidopsis, Acetylation, MADS Domain Proteins, Flowers, Promoter Regions, Genetic, Histone Deacetylases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!