Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Heart and Circul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Heart and Circulatory Physiology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation

Authors: Bindiya G. Patel; Domenico M. Taglieri; Jonathan Chernoff; Michelle M. Monasky; Yunbo Ke; R. John Solaro; Beata M. Wolska;

p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation

Abstract

p21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca2+sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult. In the present study, we subjected ex vivo hearts from wild-type (WT) and Pak1-knockout (KO) mice to 20 min of global cardiac ischemia followed by 30 min of reperfusion. In the absence of Pak1, there was an exacerbation of the increased end-diastolic pressure and reduced left ventricular developed pressure occurring after I/R injury. ProQ analysis revealed an increase in troponin-T phosphorylation at baseline in Pak1-KO hearts compared with WT. Significantly decreased myosin light chain 2 (MLC2) phosphorylation in Pak1-KO hearts compared with WT after I/R injury was confirmed by Western immunoblotting. These data indicate that Pak1-KO hearts have reduced recovery of myocardial performance after global I/R injury concomitant with changes in troponin-T and MLC2 phosphorylation. Finally, a protein-protein association between Pak1 and MLC2, and Pak1 and troponin-T, was determined by coimmunoprecipitation. Thus, results of our study provide a basis for targeting a novel pathway, including Pak1, in the therapies for patients with ischemic events.

Keywords

Mice, Knockout, Mice, 129 Strain, Myosin Light Chains, Time Factors, Myocardium, Blotting, Western, Myocardial Reperfusion Injury, Recovery of Function, Myocardial Contraction, Ventricular Function, Left, Disease Models, Animal, Mice, Troponin T, p21-Activated Kinases, Ventricular Pressure, Animals, Immunoprecipitation, Female, Phosphorylation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
bronze