Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1993
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RTG1 and RTG2: Two yeast genes required for a novel path of communication from mitochondria to the nucleus

Authors: Xinsheng Liao; Ronald A. Butow;

RTG1 and RTG2: Two yeast genes required for a novel path of communication from mitochondria to the nucleus

Abstract

The expression of some nuclear genes is sensitive to the functional state of mitochondria, a process we term retrograde regulation. Here we show that retrograde regulation of the yeast CIT2 gene encoding peroxisomal citrate synthase depends on a new class of upstream activation site element (UASr) and two previously unidentified genes, RTG1 and RTG2. RTG1 encodes a protein of 177 amino acids with similarity to basic helix-loop-helix transcription factors that likely functions at the CIT2 UASr. RTG2 encodes a protein of 394 amino acids of unknown function. Cells containing null alleles of RTG1 and RTG2 are viable and respiratory competent. However, they are auxotrophic for glutamic or aspartic acid and cannot use acetate as a sole carbon source, suggesting that both the tricarboxylic acid and glyoxylate cycles are compromised. Thus, RTG1 and RTG2 are pivotal genes in controlling interorganelle communication between mitochondria, peroxisomes, and the nucleus.

Keywords

Cell Nucleus, Glycerol, Base Sequence, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Genes, Fungal, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Citrate (si)-Synthase, Saccharomyces cerevisiae, Regulatory Sequences, Nucleic Acid, Microbodies, Mitochondria, DNA-Binding Proteins, Fungal Proteins, Gene Expression Regulation, Fungal, Genes, Regulator, Mutation, Amino Acid Sequence, Cloning, Molecular, DNA, Fungal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    380
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
380
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!