Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MPG.PuRe
Article . 2000
Data sources: MPG.PuRe
Molecular Biology of the Cell
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a Novel Saturable Endoplasmic Reticulum Localization Mechanism Mediated by the C-Terminus of aDictyosteliumProtein Disulfide Isomerase

Authors: Monnat, J; Neuhaus, E M; Pop, M S; Ferrari, D M; Kramer, B; Soldati, Thierry;

Identification of a Novel Saturable Endoplasmic Reticulum Localization Mechanism Mediated by the C-Terminus of aDictyosteliumProtein Disulfide Isomerase

Abstract

Localization of soluble endoplasmic reticulum (ER) resident proteins is likely achieved by the complementary action of retrieval and retention mechanisms. Whereas the machinery involving the H/KDEL and related retrieval signals in targeting escapees back to the ER is well characterized, other mechanisms including retention are still poorly understood. We have identified a protein disulfide isomerase (Dd-PDI) lacking the HDEL retrieval signal normally found at the C terminus of ER residents in Dictyostelium discoideum. Here we demonstrate that its 57 residue C-terminal domain is necessary for intracellular retention of Dd-PDI and sufficient to localize a green fluorescent protein (GFP) chimera to the ER, especially to the nuclear envelope. Dd-PDI and GFP-PDI57 are recovered in similar cation-dependent complexes. The overexpression of GFP-PDI57 leads to disruption of endogenous PDI complexes and induces the secretion of PDI, whereas overexpression of a GFP-HDEL chimera induces the secretion of endogenous calreticulin, revealing the presence of two independent and saturable mechanisms. Finally, low-level expression of Dd-PDI but not of PDI truncated of its 57 C-terminal residues complements the otherwise lethal yeast TRG1/PDI1 null mutation, demonstrating functional disulfide isomerase activity and ER localization. Altogether, these results indicate that the PDI57 peptide contains ER localization determinants recognized by a conserved machinery present in D. discoideum and Saccharomyces cerevisiae.

Keywords

Endoplasmic Reticulum/physiology/ultrastructure, Recombinant Fusion Proteins, Protein Disulfide-Isomerases/chemistry/genetics/metabolism, Green Fluorescent Proteins, Molecular Sequence Data, Protein Disulfide-Isomerases, Protein Sorting Signals, Endoplasmic Reticulum, Genes, Reporter, Animals, Humans, Dictyostelium, Amino Acid Sequence, Cycloheximide, Sequence Deletion, Sequence Homology, Amino Acid, Rats, Dictyostelium/enzymology/physiology/ultrastructure, Luminescent Proteins, Protein Transport, Cycloheximide/pharmacology, Luminescent Proteins/genetics, Recombinant Fusion Proteins/chemistry/metabolism, Oligopeptides, Sequence Alignment, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
Green
bronze