Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Matrix Metalloproteinase-1 and Thrombin Differentially Activate Gene Expression in Endothelial Cells via PAR-1 and Promote Angiogenesis

Authors: Constance E. Brinckerhoff; Jessica S. Blackburn;

Matrix Metalloproteinase-1 and Thrombin Differentially Activate Gene Expression in Endothelial Cells via PAR-1 and Promote Angiogenesis

Abstract

Many tumor types express matrix metalloproteinase-1 (MMP-1); its collagenase activity facilitates both tumor cell invasion and metastasis. MMP-1 expression is also associated with increased angiogenesis; however, the exact mechanism by which this occurs is not clear. MMP-1 proteolytically activates protease activated receptor-1 (PAR-1), a thrombin receptor that is highly expressed in endothelial cells. Thrombin is also present in the tumor microenvironment, and its activation of PAR-1 is pro-angiogenic. It is currently unknown whether MMP-1 activation of PAR-1 induces angiogenesis in a similar or different manner compared with thrombin. We sought to determine the mechanism by which MMP-1 promotes angiogenesis and to compare the effects of MMP-1 with those of thrombin. Our results demonstrate that via PAR-1, MMP-1 activates mitogen-activated protein kinase signaling cascades in microvessel endothelial cells. Although thrombin activation of PAR-1 also induces signaling through these pathways, the time-course of activation appears to vary. Gene expression analysis revealed a possible consequence of these signaling differences as MMP-1 and thrombin induce expression of different subsets of pro-angiogenic genes. Furthermore, the combination of thrombin and MMP-1 is more angiogenic than either protease alone. These data demonstrate that MMP-1 acts directly on endothelial cells as a pro-angiogenic signaling molecule and also suggest that the effects of MMP-1 may complement the activity of thrombin to better facilitate angiogenesis and promote tumor progression.

Related Organizations
Keywords

MAP Kinase Signaling System, Molecular Sequence Data, Thrombin, Endothelial Cells, Gene Expression, Neovascularization, Physiologic, Biocompatible Materials, Cell Line, Enzyme Activation, Platelet Endothelial Cell Adhesion Molecule-1, Drug Combinations, Humans, Proteoglycans, Receptor, PAR-1, Collagen, Laminin, Matrix Metalloproteinase 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
bronze