Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2009
Data sources: Datacite
UNC Dataverse
Article . 2009
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Palladin is a dynamic actin-associated protein in podocytes

Authors: Endlich, N; Schordan, E; Cohen, C D; Kretzler, M; Lewko, B; Welsch, T; Kriz, W; +2 Authors

Palladin is a dynamic actin-associated protein in podocytes

Abstract

Palladin, a cytoskeletal protein with essential functions for stress fiber formation, is found in developing and mature tissues, including the kidney. To define its role in the kidney, we measured its expression in mouse kidney and found it co-localized with F-actin in smooth muscle cells of renal arterial vessels, mesangial cells, and podocytes but not in tubular epithelium. Using immunoelectron microscopy, we confirmed that palladin was present in podocytes. In cultured mouse podocytes, palladin co-localized with F-actin in dense regions of stress fibers, focal adhesions, cell-cell contacts and motile cell margins. Transfection with the N-terminal half of palladin targeted it to F-actin-containing structures in podocytes while the C-terminal half accumulated in the nucleus, a result also found for endogenous palladin in cultured cells after leptomycin B was used to block nuclear export. Green fluorescent protein (GFP)-tagged palladin was found in dynamic ring-like F-actin structures and ruffles in cultured podocytes after stimulation with epidermal growth factor. Inhibition of palladin expression by transfection of an antisense construct reduced the formation of ring-like structures. Photo-bleaching analysis showed that GFP-palladin turned over with a half-time of 10 s in focal adhesions and dense regions of stress fibers, suggesting that palladin is a dynamic scaffolding protein. Our study shows that palladin is expressed in podocytes and plays an important role in actin dynamics.

Keywords

foot processes, Focal Adhesions, 2727 Nephrology, Podocytes, 610 Medicine & health, cytoskeleton, Phosphoproteins, Actins, 10052 Institute of Physiology, Cytoskeletal Proteins, Kinetics, Mice, Nephrology, Stress Fibers, 570 Life sciences; biology, Animals, 10035 Clinic for Nephrology, actin, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
hybrid