
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e., \({\delta}(X)=\inf\{{\delta}\ge 0: \, X \, \text{is $\delta$-hyperbolic}\}. \) In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
