
doi: 10.1021/ac7024283
pmid: 18416563
The multisubunit RNA polymerases (Pols) II and III synthesize mainly eukaryotic mRNAs and tRNAs, respectively. Pol II and Pol III are protein complexes consisting of 12 and 17 subunits. Here we analyzed both yeast Pol II and Pol III by multiplexed mass spectrometric analysis using various proteases and both collision induced and electron transfer dissociation. The cumulative data obtained from using the various proteases (trypsin, chymotrypsin, Glu-C and Lys-C) and the two peptide fragmentation approaches allowed us to map nearly the complete sequences of all constituents of both Pol II and III. Notably, chymotrypsin behaved equally well as and in certain circumstances better than trypsin in the context of protein coverage. Although the available high resolution structures have exposed extensive mechanistic insights into transcription, the role of post-translational modification in these processes has been addressed to a lesser extent. In our analysis of Pol II and III we detected 19 phosphorylation sites, of which 12 have not been previously reported. Identified phosphosites were mapped on the Pol II structure which provided indications that they might play a role in regulating the conformation of the clamp region and, as a consequence, interaction of Pol II with nucleic acids. The described multiplexed proteomics approach is generic and reveals that it is possible to map a protein complex to near completion while applying less than 5 mug (approximately 10 pmol) of total starting material.
Proteomics, Spectroscopy, Fourier Transform Infrared, Farmacie(FARM), RNA Polymerase III, RNA Polymerase II, Phosphorylation, Mass Spectrometry, Chromatography, Liquid
Proteomics, Spectroscopy, Fourier Transform Infrared, Farmacie(FARM), RNA Polymerase III, RNA Polymerase II, Phosphorylation, Mass Spectrometry, Chromatography, Liquid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
