Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system

Authors: Tao Sun; Gaizka Otaegi; Yoko Kawase-Koga;

Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system

Abstract

AbstractMicroRNAs, processed by the RNAase III enzyme Dicer, are ∼22 nucleotide endogenous noncoding small RNAs. The function of Dicer in the mouse central nervous system (CNS) development is not well understood. Here, we show that specifically deleting Dicer expression in the CNS and in the cerebral cortex using two Cre lines results in reduced progenitor numbers, abnormal neuronal differentiation, and thinner cortical wall. Incomplete Dicer deletion during early embryonic stages contributes to normal development of early‐born neurons in the cortex and motor neurons in the spinal cord. However, at late embryonic stages when Dicer is completely ablated in the CNS, the migration of late‐born neurons in the cortex and oligodendrocyte precursor expansion and differentiation in the spinal cord are greatly affected. Our studies of different timings of Dicer deletion demonstrate the importance of the Dicer‐mediated microRNA pathway in regulating distinct phases of neurogenesis and gliogenesis during the CNS development. Developmental Dynamics 238:2800–2812, 2009. © 2009 Wiley‐Liss, Inc.

Related Organizations
Keywords

Central Nervous System, Mice, Knockout, Neurons, Ribonuclease III, Genotype, Neurogenesis, Mice, Transgenic, Embryo, Mammalian, DEAD-box RNA Helicases, Mice, Inbred C57BL, Mice, MicroRNAs, Oligodendroglia, Cell Movement, Endoribonucleases, Animals, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    219
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
219
Top 10%
Top 10%
Top 1%
bronze