Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orthotopic Transplantation Models of Pancreatic Adenocarcinoma Derived From Cell Lines and Primary Tumors and Displaying Varying Metastatic Activity

Authors: Panayiotis Loukopoulos; Michiie Sakamoto; Michiie Sakamoto; Kengo Kanetaka; Kengo Kanetaka; Masaaki Takamura; Masaaki Takamura; +2 Authors

Orthotopic Transplantation Models of Pancreatic Adenocarcinoma Derived From Cell Lines and Primary Tumors and Displaying Varying Metastatic Activity

Abstract

To establish a series of clinically relevant orthotopic transplantation models of human pancreatic adenocarcinoma from both cell lines and primary tumors under uniform experimental conditions.Ten pancreatic cancer cell lines and 12 primary tumors were orthotopically transplanted in SCID mice. The cell lines and xenografts were characterized for K-ras, BRAF, p53, p16, and DPC4 aberrations employing direct sequencing, immunohistochemistry, and Western blotting.All xenografts showed high intrapancreatic tumorigenicity and extensive local tumor growth, and each showed a unique behavioral and genetic profile. Tumor characteristics were retained during serial passaging. The cell line-derived xenografts represented the entire expected range of histologic differentiation. Although the overall metastatic rate was moderate to high, the metastatic pattern varied; 4 cell lines showed a high metastatic rate to the liver. The primary tumor-derived xenografts retained their similarity to the corresponding original donor tumors with regard to histologic presentation and biologic behavior. K-ras, p53, p16, and DPC4 aberrations were revealed in 80%, 70%, 50%, and 40% of cell lines and 100%, 33%, 75%, and 58% of primary tumor derived xenografts, respectively. No BRAF mutations were present. The metastatic behavior of the xenografts was significantly associated with the degree of histologic differentiation, number of genes altered, and p53 status.The new models reflected the wide range of patho-biological features and genetic alterations that characterize human pancreatic cancer and may be used collectively or selectively as a markedly improved in vivo tool for preclinical and molecular studies of pancreatic cancer.

Keywords

Male, Lung Neoplasms, Genes, p16, Blotting, Western, DNA Mutational Analysis, Liver Neoplasms, Cell Differentiation, DNA, Neoplasm, Mice, SCID, Adenocarcinoma, Genes, p53, DNA-Binding Proteins, Mice, Genes, ras, Cell Line, Tumor, Lymphatic Metastasis, Animals, Humans, Cyclin-Dependent Kinase Inhibitor p16, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!