Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Mutation
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Mutation
Article . 2011
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MET mutations in cancers of unknown primary origin (CUPs)

Authors: STELLA, GIULIA; BENVENUTI, SILVIA; D. Gramaglia; A. Scarpa; A. Tomezzoli; CASSONI, Paola; SENETTA, REBECCA; +4 Authors

MET mutations in cancers of unknown primary origin (CUPs)

Abstract

Cancer of unknown primary origin (CUP) defines metastatic disease of unknown origin, accounting for 3-5% of all cancers. Growing evidence demonstrates that inappropriate execution of a genetic program named "invasive growth," driven by the MET oncogene, is implicated in the metastatic process. MET activation in cancers is mainly consequent to overexpression, whereas mutations are rarely found. We reasoned that the occurrence of MET somatic mutations might sustain premature occult dissemination of cancer cells, such as that observed in CUPs. We sequenced MET in genomic DNA obtained from 47 early metastatic cancers. By extensive immunohistochemical analysis a primary site was afterward postulated in 24 patients, whereas 23 cases remained of unknown primary (CUPs). MET somatic mutations were found in seven cases, all belonging to the CUP cohort. Mutational incidence (30%) was thus significantly higher than the expected one (4%), in the absence of high mutational background. Several nucleotide changes were novel and clustered either in the kinase domain or in the extracellular semaphorin domain. Mutated receptors were functional and sustained the transformed phenotype, suggesting that MET activating mutations are genetic markers associated with the CUP syndrome.

Keywords

Male, Metastase, 610, Cell Line, Tumor, Chlorocebus aethiops, Met; tyrosine kinase; somatic mutation; invasive growth; metastases, Animals, Humans, Neoplasm Invasiveness, Phosphorylation, Tyrosine kinase, Aged, Somatic mutation, Middle Aged, Proto-Oncogene Proteins c-met, Invasive growth, COS Cells, Mutation, MET, MET; tyrosine kinase; somatic mutation; invasive growth; metastases, Neoplasms, Unknown Primary, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Green