Views provided by UsageCounts
The MEDDOPROF Shared Task tackles the detection of occupations and employment statuses in clinical cases in Spanish from different specialties. Systems capable of automatically processing clinical texts are of interest to the medical community, social workers, researchers, the pharmaceutical industry, computer engineers, AI developers, policy makers, citizen’s associations and patients. Additionally, other NLP tasks (such as anonymization) can also benefit from this type of data. MEDDOPROF has three different sub-tasks: 1) MEDDOPROF-NER: Participants must find the beginning and end of occupation mentions and classify them as PROFESION (PROFESSION) or SITUACION_LABORAL (WORKING_STATUS) 2) MEDDOPROF-CLASS: Participants must find the beginning and end of occupation mentions and classify them according to their referent (PACIENTE [patient], FAMILIAR [family member], SANITARIO [health professional] or OTRO [other]). 3) MEDDOPROF-NORM: Participants must find the beginning and end of occupation mentions and normalize them according to a reference codes list. MEDDOPROF is part of the IberLEF 2021 workshop, which is co-located with the SEPLN 2021 conference. For further information, please visit https://temu.bsc.es/meddoprof/ or email us at encargo-pln-life@bsc.es MEDDOPROF is promoted by the Plan de Impulso de las Tecnologías del Lenguaje de la Agenda Digital (Plan TL). UPDATE 22/04/21: A new version of the training data has been uploaded after detecting some minor errors in some of the annotations. Training data for Task 3 (MEDDOPROF-NORM) has also been added. Please make sure to download the latest version! Resources: - Web - Annotation Guidelines
occupations, named entity recognition, shared task, employment status, clinical NLP, entity linking, professions, NLP, medical NLP
occupations, named entity recognition, shared task, employment status, clinical NLP, entity linking, professions, NLP, medical NLP
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 |

Views provided by UsageCounts