Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Physiology and Biochemistry
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum

Authors: Baoshuan Shang; Yihao Zang; Xiang Zhao; Jindong Zhu; Cheng Fan; Xining Guo; Xiao Zhang;

Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum

Abstract

Chloroplast movement mediated by the plant-specific phototropin blue light photoreceptors is crucial for plants to cope with fluctuating light conditions. While chloroplasts accumulate at weak light-illuminated areas, chloroplast avoidance response mediated primarily by the phototropin2 (phot2) receptor is induced by strong light illumination. Although extensive studies have been performed on phot2-mediated chloroplast avoidance in the model plant Arabidopsis, little is known on the role of the corresponding PHOT2 orthologs in chloroplast movement in cotton. In this study, we found that chloroplast avoidance movement also occurs in the tetraploid G. hirsutum and two diploid species, G. arboreum and G. raimondii, albeit with distinct features. Further bioinformatics and genetic analysis identified the cotton PHOT2 ortholog, GhPHOT2-1, which retained a conserved role in plant chloroplast avoidance movement under strong blue light. Ghphot2-1was localized in the plasma membrane and formed aggregates after high blue light irradiation. Constitutive expression of GhPHOT2-1 restored chloroplast avoidance and accumulation response, as well as phototropism, and leaf flattening characteristics of the Arabidopsis phot2 or phot1 phot2 mutants. On the contrary, silencing of GhPHOT2-1 by virus-induced gene silencing (VIGS) disrupted high blue light-induced chloroplast avoidance movement and caused photo damage in cotton leaves. Taken together, these findings demonstrated that GhPHOT2-1 is a conserved PHOT2 ortholog in regulating chloroplast avoidance and the other aforementioned phot2-mediated responses, implicating its potential role for improving high light tolerance in cotton cultivars.

Related Organizations
Keywords

Gossypium, Phototropins, Chloroplasts, Light, Arabidopsis Proteins, Cell Membrane, Arabidopsis, Genes, Plant, Real-Time Polymerase Chain Reaction, Plant Leaves, Sequence Alignment, Phylogeny, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!