Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Biology of the Cell
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Tsg101 Expression by the Steadiness Box: A Role of Tsg101-associated Ligase

Authors: McDonald, B; Martin-Serrano, J;

Regulation of Tsg101 Expression by the Steadiness Box: A Role of Tsg101-associated Ligase

Abstract

As part of the endosomal sorting complex required for transport (ESCRT) machinery, Tsg101 is essential for endosomal sorting, membrane receptor degradation and the final stages of cytokinesis. Depletion or overproduction of the protein can cause disruption of these vital processes and results in severe consequences for the cell. Tsg101 expression is thus controlled posttranslationally within a narrow range and this autoregulation has been mapped to the C-terminus of the protein. Here we elucidate further the mechanisms of this regulation and describe a novel function of Tsg101-associated ligase (Tal) in mediating this control. We show that Tal polyubiquitinates lysine residues in the C-terminus of uncomplexed Tsg101, resulting in proteasomal degradation. However, accessibility to these lysines is prevented by the presence of the other ESCRT-I proteins. We show that VPS28 is a limiting factor, and consequently Tsg101 expression surplus to ESCRT-I function is vulnerable to degradation. The role of Tal in the regulation of Tsg101 steady-state control is highlighted when Tsg101 is overexpressed; however, our data also suggest that additional ligases regulate Tsg101 expression under normal conditions. Lastly, we demonstrate that while the C-terminal lysines are targets for polyubiquitination, they are not required for any additional function necessary for ESCRT activity.

Related Organizations
Keywords

Endosomal Sorting Complexes Required for Transport, Ubiquitin-Protein Ligases, Molecular Sequence Data, Ubiquitination, Vesicular Transport Proteins, 610, Endosomes, 540, Cell Line, Protein Structure, Tertiary, Substrate Specificity, DNA-Binding Proteins, Structure-Activity Relationship, Humans, Amino Acid Sequence, Polyubiquitin, Protein Processing, Post-Translational, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze