Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMed Research Inte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMed Research International
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMed Research International
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Depletion of Arginine by Recombinant Arginine Deiminase Induces nNOS-Activated Neurotoxicity in Neuroblastoma Cells

Authors: Li-Jiuan Shen; Shan-Erh Lin; Ming-Feng Wei; Fe-Lin Lin Wu;

Depletion of Arginine by Recombinant Arginine Deiminase Induces nNOS-Activated Neurotoxicity in Neuroblastoma Cells

Abstract

The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated withN-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

Keywords

Membrane Potential, Mitochondrial, Neurons, N-Methylaspartate, Cell Survival, Hydrolases, Cell Culture Techniques, Nitric Oxide Synthase Type II, Neurodegenerative Diseases, Nitric Oxide Synthase Type I, Arginine, Nitric Oxide, Recombinant Proteins, Humans, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Green
gold