Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine and Petroleum...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine and Petroleum Geology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential

Authors: Hakimi, Mohammed Hail; Abdullah, Wan Hasiah; Alqudah, Mohammad; Makeen, Yousif M.; Mustapha, Khairul Azlan; Hatem, Baleid Ali;

Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential

Abstract

Abstract In this study, oil shale samples were collected from Late Cretaceous Muwaqaar Chalk Marl Formation (MCM) in Jordan to study their petrologic and organic geochemical properties. Pyrolysis and bulk kinetic techniques were performed on the Late Cretaceous oil shales. The results of this study were used to characterize the different organofacie types in the Late Cretaceous oil shales and their effect on the petroleum type generated during thermal maturation and the temperature of petroleum generation. On the basis of the geochemical results, the analysed Late Cretaceous oil shales contain predominantly Type II and rarely Type I kerogens. These kerogens are consistent with the high dominate of sapropel organic matter (i.e., alginite and amorphous organic matter). A good correlation is noted between increasing abundance of organic matter and the kerogen type that was derived from an open pyrolysis–gas chromatography (Py–GC). The Py–GC data indicate the analysed oil shale samples contain heterogeneous organic matter of the kerogen Type II-S. It is interesting to know that this sulphur-rich kerogen (Type II-S) can generate high sulphur oils at low maturity ranges. This is consistent with the predicted temperature petroleum generation from bulk kinetic models. The bulk kinetic models in this study indicate that the main phase of petroleum formation from the thermally immature Late Cretaceous oil shales occur between 122 and 148 °C. These temperature values of the petroleum generation are generally consistent with the kerogen type II-S and further indicate that the analysed oil shale samples can generate sulfur-rich oils at early stage of kerogen cracking.

Keywords

QE Geology, 550, Q Science (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!