Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48780/pu...
Thesis . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of novel transglutaminase-like proteins associated with sporulation in Clostridioides difficile

Authors: Joumsi Tagne, Tatiana;

Identification of novel transglutaminase-like proteins associated with sporulation in Clostridioides difficile

Abstract

Clostridioides difficile is a spore-forming, Gram-positive, obligate anaerobe majorly implicated in nosocomial infections. It causes antibiotic-induced nosocomial diarrhoeas and related healthcare infections in most parts of the world. Dissemination of C. difficile infections occurs mainly via surfaces contaminated with spores especially in clinical settings and disease control is significantly hindered by spore formation. Spores are highly infectious, and resistant to heat, alcohol, and standard disinfectants. Transglutaminases are produced during sporulation in Streptomyces mobaraense and Bacillus subtilis and promote survival and virulence by modulating cellular protein crosslinking which increases resistance of cellular structures. Transglutaminases are enzymes in microbial and mammalian organisms that irreversibly crosslink proteins by forming covalent epsilon (gamma-glutamyl) lysine bonds that are proteolysis-resistant. The detection of novel important genes not explored previously by antibiotics can facilitate the discovery of alternative efficient antimicrobials to surmount existing resistance associated with disease control and treatment. The aim of this study was to identify novel transglutaminase-like genes associated with sporulation in C. difficile 630. We detected transglutaminase activity in sporulating cells and spores of CD 630. Also, transglutaminase gene expression was detected during sporulation. Three transglutaminase-like genes were identified in CD 630 and successfully cloned in various vectors and expressed in E. coli. No transglutaminase activity was detected in culture supernatants and in purified recombinant proteins. However, transglutaminase-like proteins were purified from sporulating C. difficile 630 cells by a two-step strategy to attain a specific activity and purification fold of 4 and 57 respectively. The purified proteins were characterized and found to be calcium-independent like most microbial transglutaminases, significantly inhibited by PMSF, and only inhibited to a small extent by thiol group inhibitors. Mass spectrometry analysis of the purified proteins suggests that they are mainly involved in metabolism in CD 630. We conclude that CD630 produces transglutaminase-like proteins during sporulation whose role necessitates functional analysis involving gene knockouts and the associated phenotypes of spores.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities