Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2011 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Essential Role of STIM1, Orai1, and S100A8–A9 Proteins for Ca2+ Signaling and FcγR-Mediated Phagosomal Oxidative Activity

Authors: Véronique Schenten; Sabrina Bréchard; Eric Tschirhart; Chantal Melchior; Natacha Steinckwich;

An Essential Role of STIM1, Orai1, and S100A8–A9 Proteins for Ca2+ Signaling and FcγR-Mediated Phagosomal Oxidative Activity

Abstract

Abstract Phagocytosis is a process of innate immunity that allows for the enclosure of pathogens within the phagosome and their subsequent destruction through the production of reactive oxygen species (ROS). Although these processes have been associated with increases of intracellular Ca2+ concentrations, the mechanisms by which Ca2+ could regulate the different phases of phagocytosis remain unknown. The aim of this study was to investigate the Ca2+ signaling pathways involved in the regulation of FcγRs-induced phagocytosis. Our work focuses on IgG-opsonized zymosan internalization and phagosomal ROS production in DMSO-differentiated HL-60 cells and neutrophils. We found that chelation of intracellular Ca2+ by BAPTA or emptying of the intracellular Ca2+ store by thapsigargin reduced the efficiency of zymosan internalization. Using an small interfering RNA strategy, our data establish that the observed Ca2+ release occurs through two isoforms of inositol 1,4,5-triphosphate receptors, ITPR1 and ITPR3. In addition, we provide evidence that phagosomal ROS production is dependent on extracellular Ca2+ entry. We demonstrate that the observed Ca2+ influx is supported by ORAI calcium release-activated calcium modulator 1 (Orai1) and stromal interaction molecule 1 (STIM1). This result suggests that extracellular Ca2+ entry, which is required for ROS production, is mediated by a store-operated Ca2+ mechanism. Finally, our data identify the complex formed by S100A8 and S100A9 (S100 calcium-binding protein A8 and A9 complex), two Ca2+-binding proteins, as the site of interplay between extracellular Ca2+ entry and intraphagosomal ROS production. Thus, we demonstrate that FcγR-mediated phagocytosis requires intracellular Ca2+ store depletion for the internalization phase. Then phagosomal ROS production requires extracellular Ca2+ entry mediated by Orai1/STIM1 and relayed by S100A8–A9 as Ca2+ sensor.

Related Organizations
Keywords

Intracellular Fluid, ORAI1 Protein, Neutrophils, Receptors, IgG, Membrane Proteins, Extracellular Fluid, HL-60 Cells, Neoplasm Proteins, Phagocytosis, Phagosomes, Calgranulin B, Humans, Calgranulin A, Calcium Channels, Calcium Signaling, Stromal Interaction Molecule 1, Reactive Oxygen Species, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 1%
bronze