Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1995 . Peer-reviewed
Data sources: Crossref
Development
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LEUNIG regulates AGAMOUS expression in Arabidopsis flowers

Authors: Zhongchi Liu; Elliot M. Meyerowitz;

LEUNIG regulates AGAMOUS expression in Arabidopsis flowers

Abstract

ABSTRACT LEUNIG was identified in a genetic screen designed to isolate second-site enhancer mutations of the floral homeotic mutant apetala2-1. leunig mutations not only enhance apetala2, but by themselves cause a similar but less-pronounced homeotic transformation than apetala2 mutations. leunig flowers have sepals that are transformed toward stamens and carpels, and petals that are either staminoid or absent. In situ hybridization experiments with leunig mutants revealed altered expression pattern of the floral homeotic genes APETALA1, APETALA3, PISTIL-LATA, and AGAMOUS. Double mutants of leunig and agamous exhibited a phenotype similar to agamous single mutants, indicating that agamous is epistatic to leunig. Our analysis suggests that a key role of LEUNIG is to negatively regulate AGAMOUS expression in the first two whorls of the Arabidopsis flower.

Related Organizations
Keywords

Enhancer Elements, Genetic, Phenotype, Mutation, Arabidopsis, Genes, Homeobox, Microscopy, Electron, Scanning, Morphogenesis, Gene Expression Regulation, Developmental, Genes, Plant, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    219
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
219
Top 10%
Top 1%
Top 10%
Green
bronze