Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2015 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 2015
Data sources: u:cris
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells

Authors: Michael T. Wolfinger; Michael T. Wolfinger; Michael T. Wolfinger; Stefanie Hosiner; Silke Dorner; Anna Skucha; Sanja Antic;

General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells

Abstract

The translation and degradation of mRNAs are two key steps in gene expression that are highly regulated and targeted by many factors, including microRNAs (miRNAs). While it is well established that translation and mRNA degradation are tightly coupled, it is still not entirely clear where in the cell mRNA degradation takes place. In this study, we investigated the possibility of mRNA degradation on the ribosome in Drosophila cells. Using polysome profiles and ribosome affinity purification, we could demonstrate the copurification of various deadenylation and decapping factors with ribosome complexes. Also, AGO1 and GW182, two key factors in the miRNA-mediated mRNA degradation pathway, were associated with ribosome complexes. Their copurification was dependent on intact mRNAs, suggesting the association of these factors with the mRNA rather than the ribosome itself. Furthermore, we isolated decapped mRNA degradation intermediates from ribosome complexes and performed high-throughput sequencing analysis. Interestingly, 93% of the decapped mRNA fragments (approximately 12,000) could be detected at the same relative abundance on ribosome complexes and in cell lysates. In summary, our findings strongly indicate the association of the majority of bulk mRNAs as well as mRNAs targeted by miRNAs with the ribosome during their degradation.

Keywords

RNA Stability, Cell Line, SACCHAROMYCES-CEREVISIAE, CYTOPLASMIC PROCESSING BODIES, 106023 Molekularbiologie, AU-RICH ELEMENT, PROMOTES DEADENYLATION, Animals, Drosophila Proteins, MOLECULAR CHARACTERIZATION, RNA, Messenger, 106052 Cell biology, PROTEIN-CODING REGION, 106023 Molecular biology, EUKARYOTIC TRANSLATION INITIATION, BINDING-PROTEIN, MicroRNAs, P-BODY FORMATION, Argonaute Proteins, DECAPPING ENZYME, Drosophila, 106052 Zellbiologie, Ribosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze