Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertensionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension
Article
Data sources: UnpayWall
Hypertension
Article . 2013 . Peer-reviewed
Data sources: Crossref
Hypertension
Article . 2013
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dietary Salt Intake Regulates WNK3–SPAK–NKCC1 Phosphorylation Cascade in Mouse Aorta Through Angiotensin II

Authors: Tatemitsu Rai; Motoko Chiga; Katsuyuki Oi; Daiei Takahashi; Sung-Sen Yang; Koichiro Susa; Takayasu Mori; +7 Authors

Dietary Salt Intake Regulates WNK3–SPAK–NKCC1 Phosphorylation Cascade in Mouse Aorta Through Angiotensin II

Abstract

Na–K–Cl cotransporter isoform 1 (NKCC1) is involved in the regulation of vascular smooth muscle cell contraction. Recently, the with-no-lysine kinase (WNK)–STE20/SPS1-related proline/alanine-rich kinase (SPAK)–NKCC1 phosphorylation cascade in vascular smooth muscle cells was found to be important in the regulation of vascular tone. In this study, we investigated whether the WNK–SPAK–NKCC1 cascade in mouse aortic tissue is regulated by dietary salt intake and the mechanisms responsible. Phosphorylation of SPAK and NKCC1 was significantly reduced in the aorta in high-salt–fed mice and was increased in the aorta in low-salt–fed mice, indicating that the WNK–SPAK–NKCC1 phosphorylation cascade in the aorta was indeed regulated by dietary salt intake. Acute and chronic angiotensin II infusion increased phosphorylation of SPAK and NKCC1 in the mouse aorta. In addition, valsartan, an antagonist of angiotensin II type 1 receptor, inhibited low-salt diet–induced phosphorylation of SPAK and NKCC1, demonstrating that angiotensin II activates the WNK–SPAK–NKCC1 phosphorylation cascade through the angiotensin II type 1 receptor. However, a low-salt diet and angiotensin II together did not increase phosphorylation of SPAK and NKCC1 in the aorta in WNK3 knockout mice, indicating that activation of the WNK–SPAK–NKCC1 phosphorylation cascade induced by a low-salt diet and angiotensin II is dependent on WNK3. Indeed, angiotensin II–induced increases in blood pressure were diminished in WNK3 knockout mice. In addition, decreased response to angiotensin II in the mesenteric arteries was observed in WNK3 knockout mice. Our data also clarified a novel mechanism for regulation of vascular tonus by angiotensin II. Inhibition of this cascade could, therefore, be a novel therapeutic target in hypertension.

Keywords

Mice, Knockout, Angiotensin II, Tetrazoles, Blood Pressure, Sodium, Dietary, Valine, Protein Serine-Threonine Kinases, Mesenteric Arteries, Mice, Animals, Solute Carrier Family 12, Member 2, Valsartan, Phosphorylation, Angiotensin II Type 1 Receptor Blockers, Aorta

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
bronze