Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene Expression Patterns
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues

Authors: Min Min Lu; Shanru Li; Honghua Yang; Edward E. Morrisey;

Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues

Abstract

In this study, we describe the isolation and characterization of Foxp4, a new member of the Foxp subfamily of winged-helix transcription factors. The full-length mouse Foxp4 cDNA encodes a 685-amino-acid protein that is similar to Foxp1 and Foxp2. Foxp4 gene expression is observed primarily in pulmonary, neural, and gut tissues during embryonic development. To compare the protein expression patterns of Foxp4 to Foxp1 and Foxp2, specific polyclonal antisera to each of these proteins was used in immunohistochemical analysis of mouse embryonic tissues. All three proteins are expressed in lung epithelium with Foxp1 and Foxp4 expressed in both proximal and distal airway epithelium while Foxp2 is expressed primarily in distal epithelium. Foxp1 protein expression is also observed in the mesenchyme and vascular endothelial cells of the lung. At embryonic day 12.5, Foxp1 and Foxp2 are expressed in both the mucosal and epithelial layers of the intestine. However, Foxp2 is expressed only in the outer mucosal layer of the intestine and stomach later in development. Finally, Foxp4 is expressed exclusively in the epithelial cells of the developing intestine, where, in late development, it is expressed in a gradient along the longitudinal axis of the villi.

Related Organizations
Keywords

Embryology, Mucous Membrane, Molecular Sequence Data, Gene Expression Regulation, Developmental, Forkhead Transcription Factors, Epithelium, DNA-Binding Proteins, Repressor Proteins, Mice, Organ Specificity, Animals, Amino Acid Sequence, Digestive System, Lung, Sequence Alignment, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 10%
Top 10%
Top 10%
hybrid