
Genome comparisons have revealed major lateral gene transfer between the three primary kingdoms of life - Bacteria, Archaea, and Eukarya. Another important evolutionary phenomenon involves the evolutionary mobility of protein domains that form versatile multidomain architectures. We were interested in investigating the possibility of a combination of these phenomena, with an invading gene merging with a pre-existing gene in the recipient genome.Complete genomes of fifteen bacteria, four archaea and one eukaryote were searched for interkingdom gene fusions (IKFs); that is, genes coding for proteins that apparently consist of domains originating from different primary kingdoms. Phylogenetic analysis supported 37 cases of IKF, each of which includes a 'native' domain and a horizontally acquired 'alien' domain. IKFs could have evolved via lateral transfer of a gene coding for the alien domain (or a larger protein containing this domain) followed by recombination with a native gene. For several IKFs, this scenario is supported by the presence of a gene coding for a second, stand-alone version of the alien domain in the recipient genome. Among the genomes investigated, the greatest number of IKFs has been detected in Mycobacterium tuberculosis, where they are almost always accompanied by a stand-alone alien domain. For most of the IKF cases detected in other genomes, the stand-alone counterpart is missing.The results of comparative genome analysis show that IKF formation is a real, but relatively rare, evolutionary phenomenon. We hypothesize that IKFs are formed primarily via the proposed two-stage mechanism, but other than in the Actinomycetes, in which IKF generation seems to be an active, ongoing process, most of the stand-alone intermediates have been eliminated, perhaps because of functional redundancy.
Genome, Bacteria, Proteome, Hydrolases, Archaeal Proteins, Escherichia coli Proteins, Molecular Sequence Data, Saccharomyces cerevisiae, Archaea, Enzymes, Evolution, Molecular, Fungal Proteins, Bacterial Proteins, Genes, Acetyltransferases, Genome, Archaeal, Amino Acid Sequence, Genome, Fungal, Genome, Bacterial, Phylogeny
Genome, Bacteria, Proteome, Hydrolases, Archaeal Proteins, Escherichia coli Proteins, Molecular Sequence Data, Saccharomyces cerevisiae, Archaea, Enzymes, Evolution, Molecular, Fungal Proteins, Bacterial Proteins, Genes, Acetyltransferases, Genome, Archaeal, Amino Acid Sequence, Genome, Fungal, Genome, Bacterial, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
