Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Reproducti...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Reproduction and Development
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autocrine and paracrine mechanisms regulating primordial germ cell proliferation

Authors: Roger A. Pedersen; Eihachiro Kawase; Eihachiro Kawase; Koichiro Hashimoto;

Autocrine and paracrine mechanisms regulating primordial germ cell proliferation

Abstract

AbstractAlthough several mitogens and survival factors have been previously shown to act on primordial germ cells (PGCs) in culture, it is not clear whether they are responsible for controlling proliferation of PGCs in the embryo. We show here that during their migratory phase, PGCs do not express FGF‐4, FGF‐8, or FGF‐17, but these FGFs are expressed by neighboring cells. Thus, any FGF action on migrating PGCs would appear to be through a paracrine mechanism. We found that after entering into the gonads, PGCs start to express FGF‐4 and FGF‐8. On this basis, we hypothesize that FGF signaling is involved in both a paracrine manner in initiating PGC proliferation during their migration and an autocrine manner in sustaining PGC proliferation after their arrival in the gonads. We then studied the role of soluble stem cell factor (SCF), which acts as a survival factor or a mitogen in culture, to determine whether it interacts with FGFs. We found that SCF has a complex effect on PGC proliferation. On one hand, soluble SCF promoted PGC proliferation synergistically with FGF in the absence of membrane‐bound SCF. Conversely, soluble SCF inhibited FGF‐stimulated proliferation of PGCs in the presence of membrane‐bound SCF. We account for these findings in a model involving regulation of PGC proliferation, in which SCF modulates the response to FGFs. Mol. Reprod. Dev. 68: 5–16, 2004. © 2004 Wiley‐Liss, Inc.

Keywords

Stem Cell Factor, Fibroblast Growth Factor 8, Fibroblast Growth Factor 4, Embryo, Mammalian, Receptors, Fibroblast Growth Factor, Fibroblast Growth Factors, Autocrine Communication, Mice, Germ Cells, Cell Movement, Proto-Oncogene Proteins, Paracrine Communication, Animals, RNA, Messenger, Gonads, Cell Division, Cells, Cultured, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!