Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Dermato-Venereo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Dermato-Venereologica
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Dermato-Venereologica
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In Vitro Propagation and Dynamics of T cells from Skin Biopsies by Methods Using Interleukins-2 and -4 or Anti-CD3/CD28 Antibody-coated Microbeads

Authors: Hashizume, Hideo; Hansen, Anker; Poulsen, Lars K; Thomsen, Allan Randrup; Takigawa, Masahiro; Thestrup-Pedersen, Kristian;

In Vitro Propagation and Dynamics of T cells from Skin Biopsies by Methods Using Interleukins-2 and -4 or Anti-CD3/CD28 Antibody-coated Microbeads

Abstract

In order to explore the mechanisms of inflammatory skin disorders, we established two methods of expanding skin-derived lymphocytes, one using high levels of interleukin (IL)-2 and IL-4 (method A) and the other using low levels of cytokines and anti-CD3/CD28 microbeads (method B). Both methods provide advantages for functional studies. With either of these two, we could obtain more than 10(7) cells/ from a 3 mm skin biopsy in 21 days from 23 out of 26 biopsies of various skin diseases. The relevance of these cells was confirmed by shifted T-cell receptor beta chain variable region (TCR-Vbeta) repertoire and antigen-dependent proliferation in antigen-driven skin disorders. The propagation of skin-resident lymphocytes, seen especially in method A, seems to be mediated by a functional defect of regulatory T cells residing in skin sequentially expanding under the conditions of our methods.

Keywords

Adult, Cytotoxicity, Immunologic, Male, CD28, Time Factors, CD3 Complex, Cytotoxicity, T-Lymphocytes, Biopsy, Denmark, Cell Culture Techniques, Cell Separation, Antibodies, Cell Line, CD28 Antigens, Japan, Immunologic, Receptors, Humans, Antigens, Skin, Aged, Cell Proliferation, alpha-beta, Middle Aged, T-Cell, Flow Cytometry, CD3, Recombinant Proteins, Microspheres, Phenotype, Antigen, Interleukin-2, Female, Interleukin-4

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
gold