Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Cell Biology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complex interplay between the length and composition of the huntingtin-derived peptides modulates the intracellular behavior of the N-terminal fragments of mutant huntingtin

Authors: Jerzy Bal; Michał Milewski; Daniel Bąk; Pawel Gawlinski; Agata Matysiak;

Complex interplay between the length and composition of the huntingtin-derived peptides modulates the intracellular behavior of the N-terminal fragments of mutant huntingtin

Abstract

Diverse subcellular localizations of the huntingtin-containing inclusion bodies are frequently suspected of reflecting crucial divisions between different cellular pathways contributing to the pathophysiology of Huntington's disease. Here, we use a panel of different N-terminal huntingtin fragments overexpressed in transfected neuronal and non-neuronal cells to demonstrate that it is the length of the N-terminal huntingtin fragments rather than a presence of any specific amino acid sequences that determines the ratio between the nuclear and cytoplasmic inclusion bodies. Importantly, the length of those fragments does also seem to strongly influence the folding of the aggregating huntingtin species, as indicated by the apparent differences in their accessibility for different antibodies directed against particular subdomains within the N-terminal part of huntingtin, although these differences do not correlate with the peptides' ability to efficiently aggregate within the cell nucleus. Furthermore, the relatively long huntingtin fragment containing 588 amino acids of the reference sequence shows intracellular behavior that is substantially different from that exhibited by its shorter counterparts (containing either 171, 120, 89 or 64 amino acids), as this rarely aggregating peptide is not only accumulating in cytoplasmic inclusions of slightly different morphology but is also most strongly affected by the FLAG-tagging procedure that unexpectedly induces (or enhances) autophagy-related processes. Together, our results reveal a significant heterogeneity of the huntingtin accumulation patterns that are observed at the cellular level. These patterns are not only strongly dependent on both the length and the amino acid composition of the N-terminal huntingtin peptides but also seem to engage different cellular mechanisms implicated in the pathogenesis of Huntington's disease, including the non-proteasomal degradation of potentially toxic huntingtin forms.

Related Organizations
Keywords

Cell Nucleus, Inclusion Bodies, Neurons, Huntingtin Protein, Nerve Tissue Proteins, Protein Aggregation, Pathological, Peptide Fragments, Cell Line, Mice, Huntington Disease, Mutation, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold